Convolutional Neural Network for Identifying Effective Seismic Force at a Domain Reduction Method Layer for Rapid Reconstruction of Shear Waves

Shashwat Maharjan, Bruno Guidio, PhD, and Chanseok Jeong, PhD

AGENDA

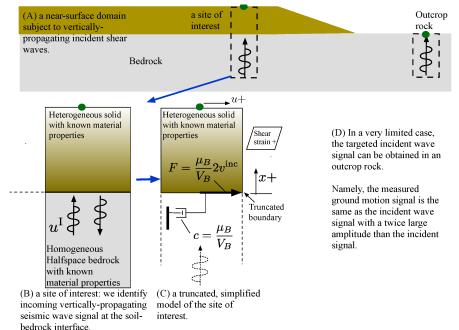
- Existing Methods and Limitations
- Problem Description
- Synthetic Data Generation
- Convolutional Neural Network
- Numerical Results
- Discussion

RESEARCH QUESTION

Is it possible to develop a highly accurate method for reconstructing seismic ground forces from sparse ground motion data that is less computationally intensive and suitable for real-time predictions?

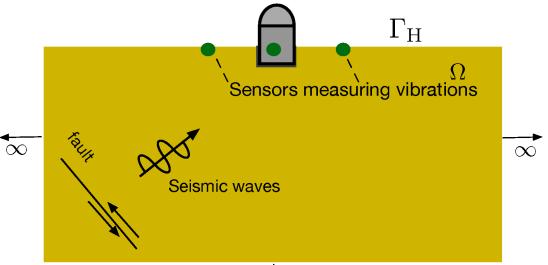
EXISTING METHODS AND LIMITATIONS

DECONVOLUTION



u, S. H. "A deconvolution scheme for determination of seismic loads in Bulletin of the Seismological Society of America 103.1 (2013): 258-267.

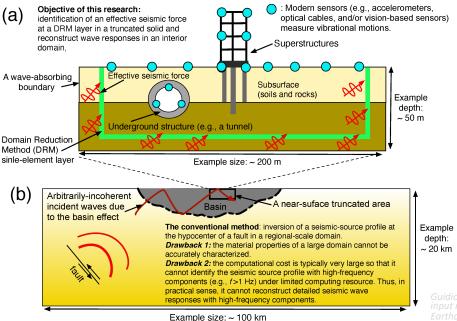
SEISMIC SOURCE IDENTIFICATION IN A LARGE DOMAIN



8

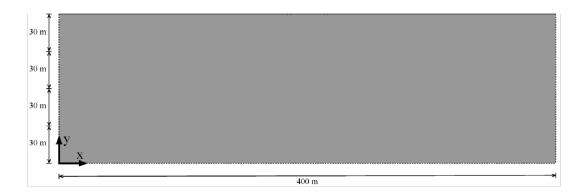
Akcelik, Volkan, George Biros, and Omar Ghattas. "Parallel multiscale Gauss-Newton Krylov methods for inverse wave propagation." SC'02: Proceedings of the 200 ACM/IEEE Conference on Supercomputing. IEEE, 200.

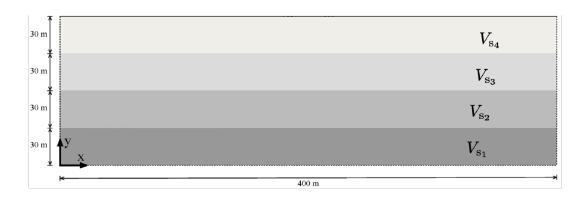
PARTIAL DIFFERENTIAL EQUATION CONSTRAINED OPTIMIZATION

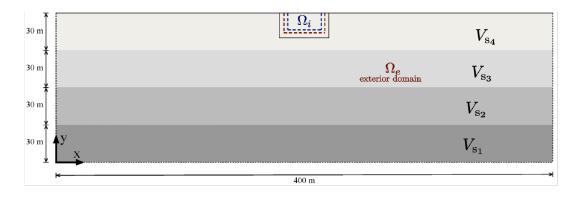


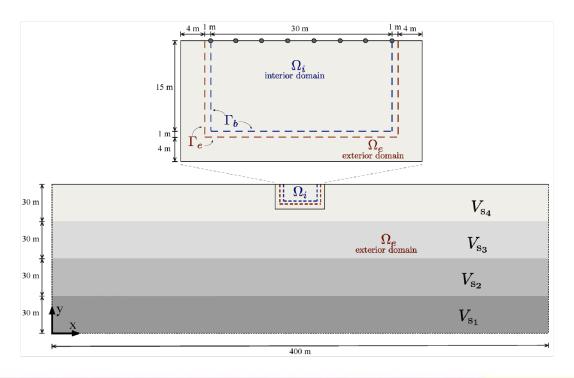
Guidio, Bruno, et al. "Passive seismic inversion of SH wave input motions in a truncated domain." Soil Dynamics and Earthquake Engineering 158 (2022): 107263.

PROBLEM DESCRIPTION

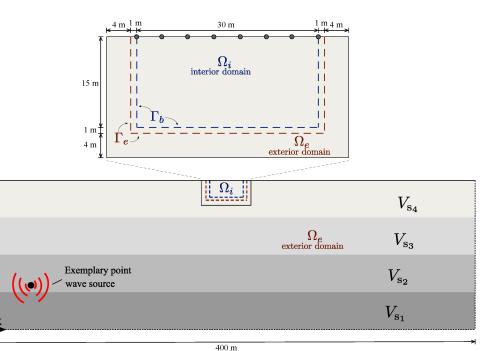








SITE PROFILE 1 HOMOGENEOUS SOIL PROFILE



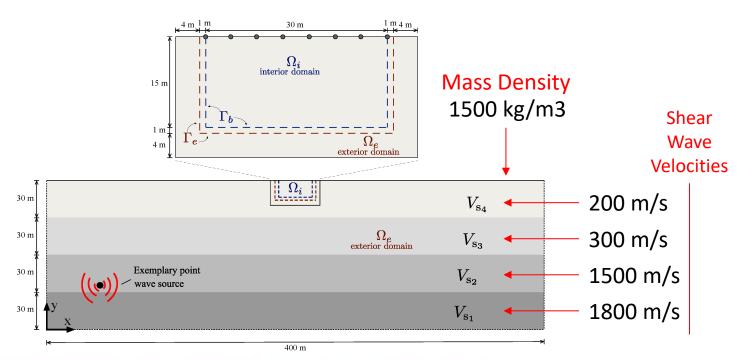
30 m

30 m

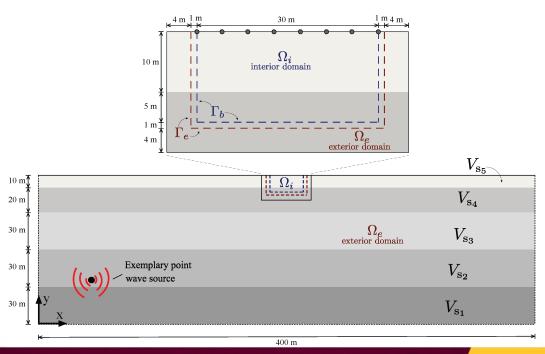
30 m

30 m

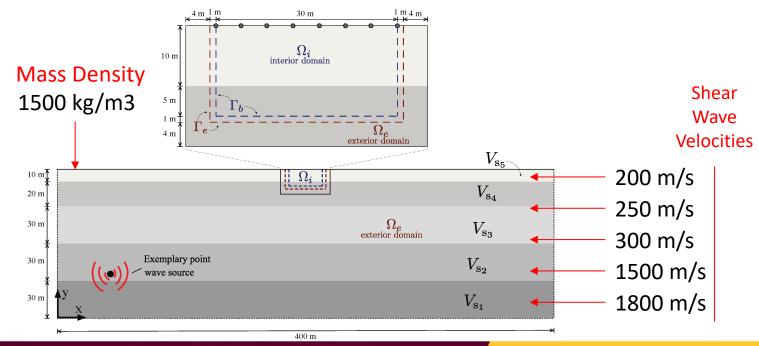
SITE PROFILE 1 HOMOGENEOUS SOIL PROFILE



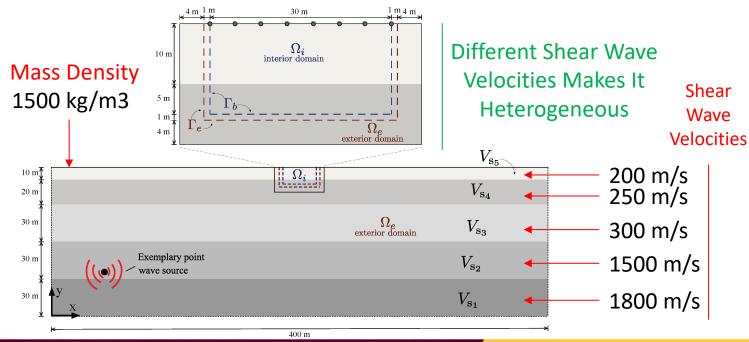
SITE PROFILE 2 HETEROGENEOUS SOIL PROFILE



SITE PROFILE 2 HETEROGENEOUS SOIL PROFILE



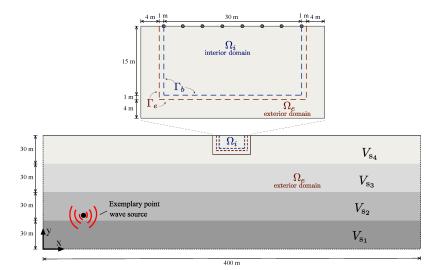
SITE PROFILE 2 HETEROGENEOUS SOIL PROFILE



SYNTHETIC DATA GENERATION

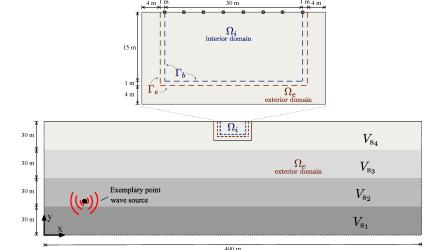
WAVE SOURCE

- Randomly chooses between 1- or 2-point wave sources (N_p)
- Randomly selects parameters for each source:
 - start time (t_p)
 - peak amplitude (A_{peak})
 - frequency (f)
 - location (x_s, y_s)



WAVE SOURCE

- Randomly chooses between 1- or 2-point wave sources (N_p)
- Randomly selects parameters for each source:
 - start time (t_p)
 - peak amplitude (A_{peak})
 - frequency (f)
 - location (x_s, y_s)

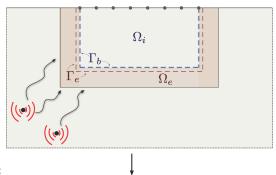


FORWARD SOLVER

- Solves the 2D wave propagation problem in an enlarged domain using the randomly generated source parameters
- Saves displacement data at sensor locations on the surface as input-layer features
- Saves effective nodal forces on DRM layer boundaries (Γ_b and Γ_e) as output-layer features
- Repeats this process 20,000 times to generate a large dataset for training and evaluating the CNN model

At i-th randomizer iteration

Step 1:

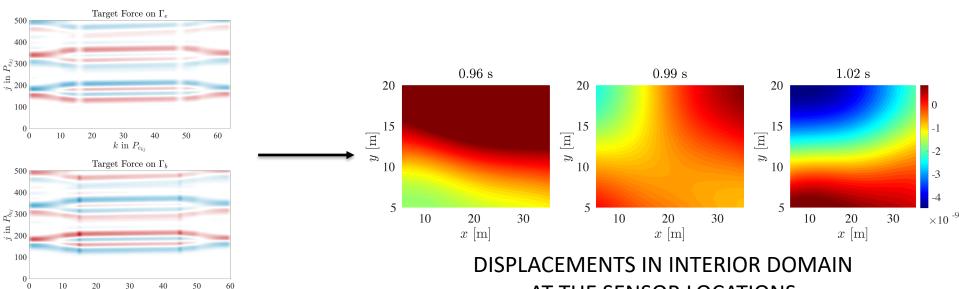


- Record wave responses u^m at sensors for all time steps
- Store wave responses at Ω_e for all time steps

Step 2:

- Save $\mathbf{u}^{\mathbf{m}}$ for all time steps as *i*-th input-layer data
- Calculate P_e^{eff} and P_e^{eff} (only at the DOFs at Γ_e) for all time steps and save them as the *i*-th output-layer data

FORWARD SOLVER...

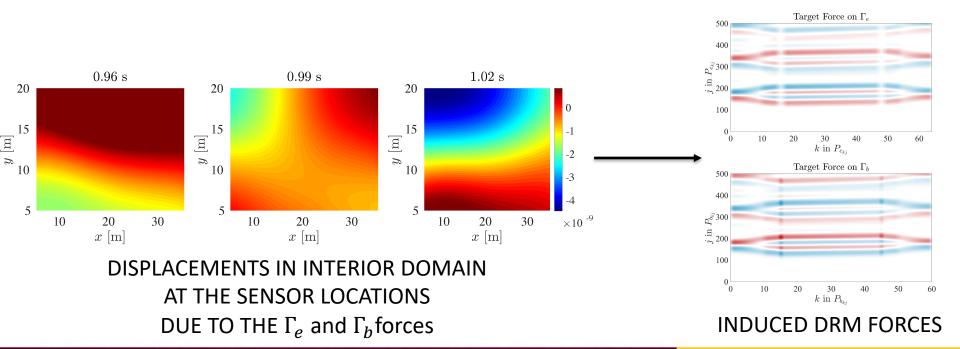


INDUCED DRM FORCES

k in $P_{b_{k,i}}$

DISPLACEMENTS IN INTERIOR DOMAIN AT THE SENSOR LOCATIONS DUE TO THE Γ_e and Γ_b forces

USING MACHINE LEARNING...



CONVOLUTIONAL NEURAL NETWORK

- Automatic feature extraction for streamlined processing.
- Efficiently identifies prominent features automatically.
- Less computationally demanding than fullyconnected layers.
- Preserves spatial data characteristics effectively.

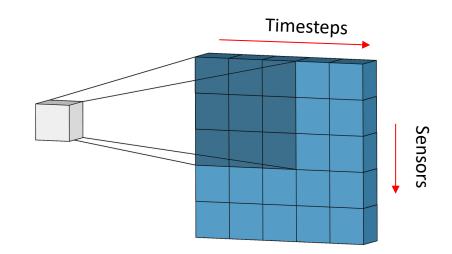
- Automatic feature extraction for streamlined processing.
- Efficiently identifies prominent features automatically.
- Less computationally demanding than fullyconnected layers.
- Preserves spatial data characteristics effectively.

- Automatic feature extraction for streamlined processing.
- Efficiently identifies prominent features automatically.
- Less computationally demanding than fullyconnected layers.
- Preserves spatial data characteristics effectively.

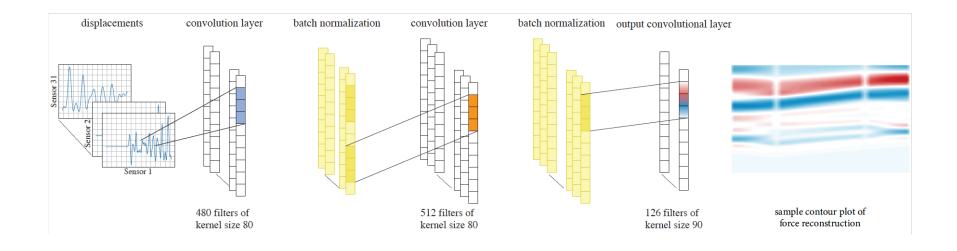
- Automatic feature extraction for streamlined processing.
- Efficiently identifies prominent features automatically.
- Less computationally demanding than fullyconnected layers.
- Preserves spatial data characteristics effectively.

APPPLICATION TO OUR DATA

- Convolution enhances spatial data capture by operating on timestep values.
- CNNs provide automatic feature extraction, strengthening their selection.
- CNNs enable superior and efficient processing with massive data sizes.



CNN ARCHITECTURE



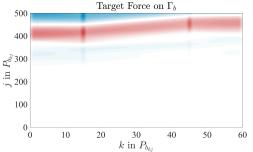
NUMERICAL RESULTS

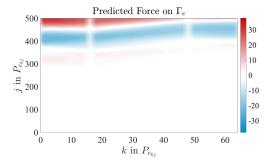
ERROR METRICS

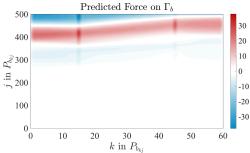
- Mean Absolute Error = |Target Predicted|
- Mean Squared Error = $(Target Predicted)^2$
- Sample Percent Error = $\left| \frac{Target Predicted}{Target} \right| \times 100\%$

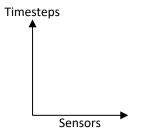
SITE PROFILE 1 HOMOGENEOUS SOIL PROFILE

SITE PROFILE 1 HOMOGENEOUS SOIL PROFILE BEST FORCE PREDICTION (0.73%)

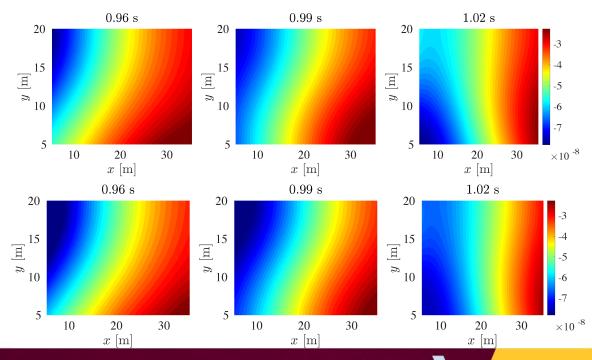




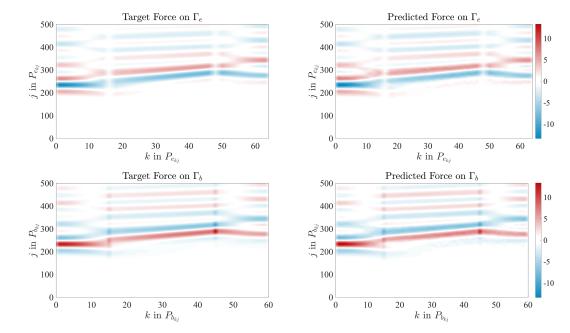




SITE PROFILE 1 HOMOGENEOUS SOIL PROFILE CORRESPONDING RESPONSE PREDICTION (0.69%)



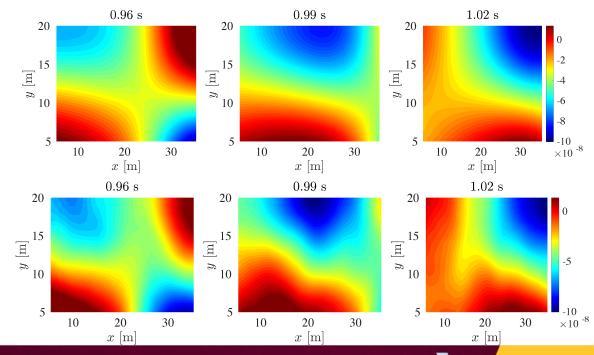
SITE PROFILE 1 HOMOGENEOUS SOIL PROFILE 50TH PERCENTILE FORCE PREDICTION (2.01%)



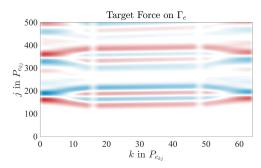
Timesteps

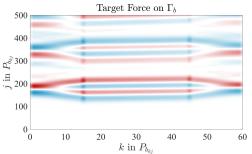
Sensors

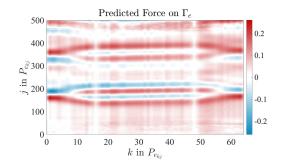
SITE PROFILE 1 HOMOGENEOUS SOIL PROFILE CORRESPONDING RESPONSE PREDICTION (1.58%)

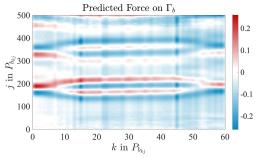


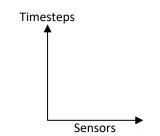
SITE PROFILE 1 HOMOGENEOUS SOIL PROFILE WORST FORCE PREDICTION (35.32%)



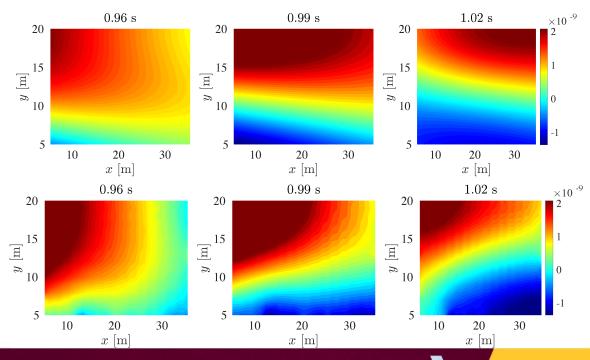






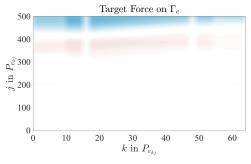


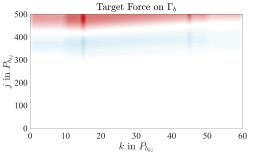
SITE PROFILE 1 HOMOGENEOUS SOIL PROFILE CORRESPONDING RESPONSE PREDICTION (18.86%)



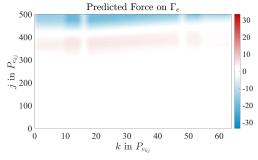
SITE PROFILE 2 HETEROGENEOUS SOIL PROFILE

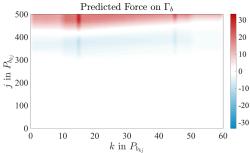
SITE PROFILE 1 HETEROGENEOUS SOIL PROFILE BEST FORCE PREDICTION (0.22%)



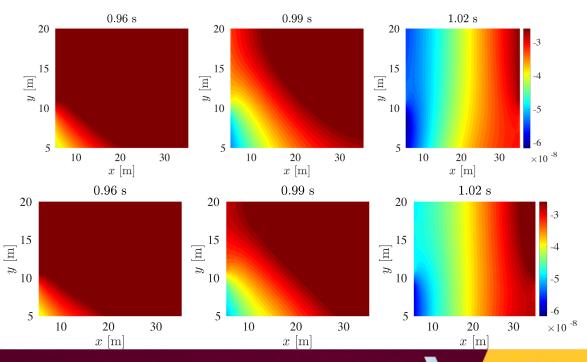


Timesteps

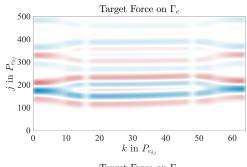


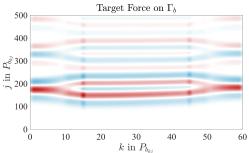


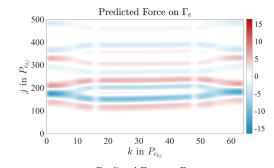
SITE PROFILE 1 HETEROGENEOUS SOIL PROFILE CORRESPONDING RESPONSE PREDICTION (0.20%)

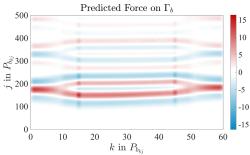


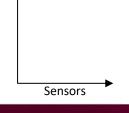
SITE PROFILE 1 HETEROGENEOUS SOIL PROFILE 50TH PERCENTILE FORCE PREDICTION (1.12%)





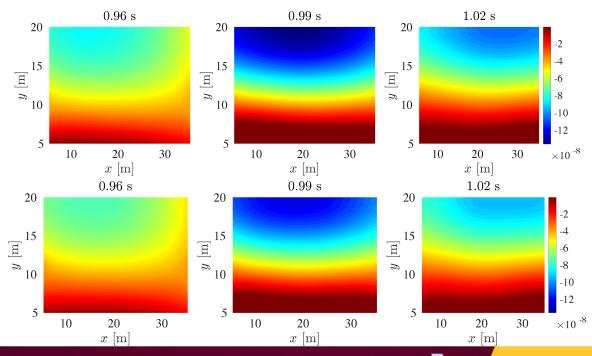




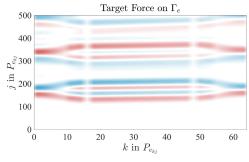


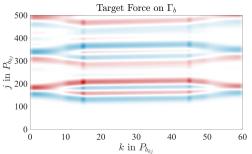
Timesteps

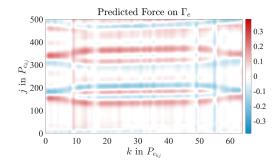
SITE PROFILE 1 HETEROGENEOUS SOIL PROFILE CORRESPONDING RESPONSE PREDICTION (0.82%)

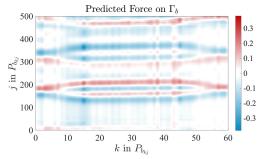


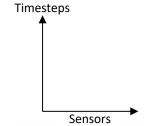
SITE PROFILE 1 HETEROGENEOUS SOIL PROFILE WORST FORCE PREDICTION (24.52%)



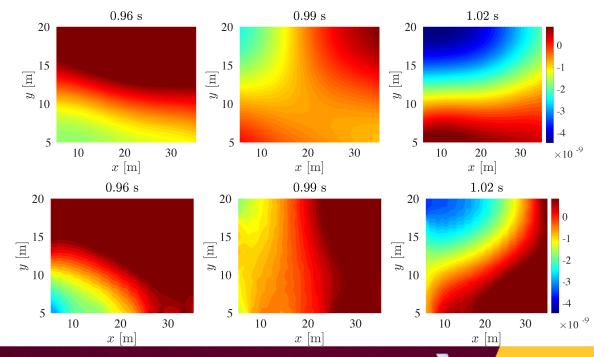




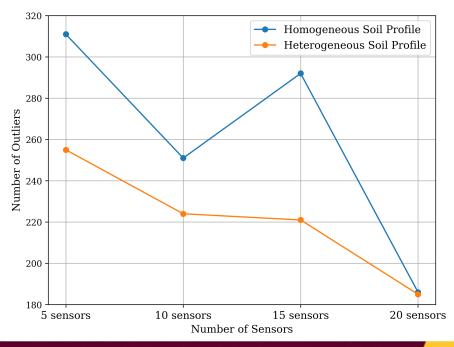




SITE PROFILE 1 HETEROGENEOUS SOIL PROFILE CORRESPONDING RESPONSE PREDICTION (29.79%)

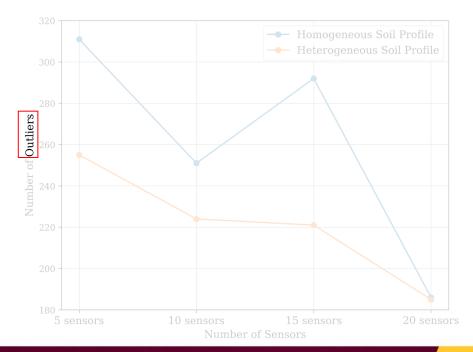


PARAMETRIC STUDY NUMBER OF SENSORS

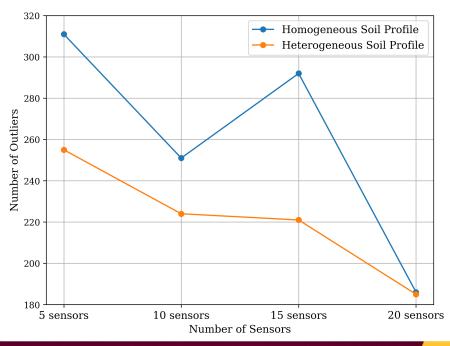


PARAMETRIC STUDY NUMBER OF SENSORS

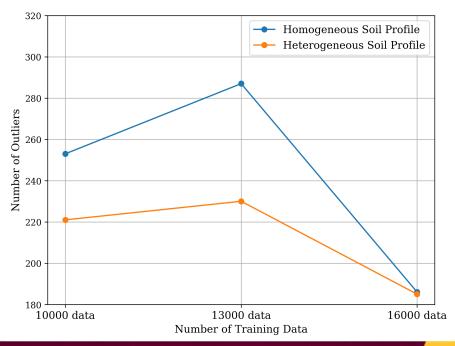
Outlier
In this case, it refers to a particular sample data that deviates significantly from the normal trend of data used to train the neural network.



PARAMETRIC STUDY NUMBER OF SENSORS



PARAMETRIC STUDY NUMBER OF TRAINING DATA



DISCUSSION

SOURCES OF ERROR

- Effective in predicting active areas but struggles with near-zero displacement values.
- Heterogeneous soil profiles feature complex 5-layer structures, introducing uncertainty versus simpler homogeneous profiles.

DISCUSSION

- Our CNN-based approach accurately identifies seismic forces at DRM layer boundaries in diverse soil profiles, expediting ground motion reconstruction from measured signals at the sensors.
- The CNN model surpasses PDE-constrained optimization in processing time, requiring only 0.15 seconds per test sample versus approximately an hour for the optimization method.

FUTURE DIRECTIONS

- Expanding the approach to tackle complex three-dimensional soil profiles and wave propagation scenarios.
- Investigating uncertainty quantification of the CNN model.

REFERENCES

- Akcelik, Volkan, George Biros, and Omar Ghattas. "Parallel multiscale Gauss-Newton-Krylov methods for inverse wave propagation." SC'02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing. IEEE, 2002.
- Guidio, Bruno, et al. "Passive seismic inversion of SH wave input motions in a truncated domain." Soil Dynamics and Earthquake Engineering 158 (2022): 107263.
- Ju, S. H. "A deconvolution scheme for determination of seismic loads in finite-element analyses." *Bulletin of the Seismological Society of America* 103.1 (2013): 258-267.
- Maharjan, Shashwat, Bruno Guidio, and Chanseok Jeong. "Convolutional neural network for identifying effective seismic force at a DRM layer for rapid reconstruction of SH ground motions." *Earthquake Engineering & Structural Dynamics* 53.2 (2024): 894-923.

QUESTIONS?

